Identification of osteoconductive and biodegradable polymers from a combinatorial polymer library.
نویسندگان
چکیده
Combinatorial polymer syntheses are now being utilized to create libraries of materials with potential utility for a wide variety of biomedical applications. We recently developed a library of photopolymerizable and biodegradable poly(beta-amino ester)s (PBAEs) that possess a range of tunable properties. In this study, the PBAE library was assessed for candidate materials that met design criteria (e.g., physical properties such as degradation and mechanical strength and in vitro cell viability and osteoconductive behavior) for scaffolding in mineralized tissue repair. The most promising candidate, A6, was then processed into three-dimensional porous scaffolds and implanted subcutaneously and only presented a mild inflammatory response. The scaffolds were then implanted intramuscularly and into a critical-sized cranial defect either alone or loaded with bone morphogenetic protein-2 (BMP-2). The samples in both locations displayed mineralized tissue formation in the presence of BMP-2, as evident through radiographs, micro-computed tomography, and histology, whereas samples without BMP-2 showed minimal or no mineralized tissue. These results illustrate a process to identify a candidate scaffolding material from a combinatorial polymer library, and specifically for the identification of an osteoconductive scaffold with osteoinductive properties via the inclusion of a growth factor.
منابع مشابه
Biodegradable fibrous scaffolds with diverse properties by electrospinning candidates from a combinatorial macromer library.
The properties of electrospun fibrous scaffolds, including degradation, mechanics and cellular interactions, are important for their use in tissue engineering applications. Although some diversity has been obtained previously in fibrous scaffolds, optimization of scaffold properties relies on iterative techniques in both polymer synthesis and processing. Here, we electrospun candidates from a c...
متن کاملDesign and characterization of biodegradable polymer-clay nanocomposites prepared by solution mixing technique
This paper discusses about preparation of biodegradable polymer /clay nanocomposites based on organically modified montmorillonite clay; i.e. cloisite 10A and biodegradable polymer chitosan by solution mixing technique and their characterization. The nanocomposites were successfully prepared and their structures were characterized by powder x-ray diffraction (XRD), particle size analyzer (Beckm...
متن کاملDesign and characterization of biodegradable polymer-clay nanocomposites prepared by solution mixing technique
This paper discusses about preparation of biodegradable polymer /clay nanocomposites based on organically modified montmorillonite clay; i.e. cloisite 10A and biodegradable polymer chitosan by solution mixing technique and their characterization. The nanocomposites were successfully prepared and their structures were characterized by powder x-ray diffraction (XRD), particle size analyzer (Beckm...
متن کاملComposite Scaffolds for Bone Tissue Engineering
Biomaterial and scaffold development underpins the advancement of tissue engineering. Traditional scaffolds based on biodegradable polymers such as poly(lactic acid) and poly(lactic acidco-glycolic acid) are weak and non-osteoconductive. For bone tissue engineering, polymer-based composite scaffolds containing bioceramics such as hydroxyapatite can be produced and used. The bioceramics can be e...
متن کاملSynthesis and Characterization of Biodegradable Semi-Interpenetrating Polymer Networks Based on Star-Shaped Copolymers of ɛ-Caprolactone and Lactide
In this paper, the focus is on a new kind of biodegradable semi-interpenetrating polymer networks, which derived from ɛ-caprolactone, lactide, 1,4-butane diisocyanate and ethylenediamine and also its potential has been investigated in soft tissue engineering applications. The polymers were characterized by nuclear magnetic resonance (NMR) spectrometry, fourier transform infrared spectroscopy (F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 93 2 شماره
صفحات -
تاریخ انتشار 2010